内容简介
本书作者擅长写教科书,以选材仔细、论述清晰、实例丰富著称。本书是一部理科研究生使用的泛函分析教材,读者只需具备积分和测度论的知识即可阅读。全书充分体现了作者的著书风格,以实例先行,从具体到一般,从浅入深,并配有许多精心挑选的例题和习题。
目录
Preface
Preface to the Second Edition
CHAPTER I
Hilbert Spaces
1.Elementary Properties and Examples
2.Orthogonality
3.The Riesz Representation Theorem
4.Orthonormal Sets of Vectors and Bases
5.Isomorphic Hilbert Spaces and the Fourier Transform for the Circle
6.The Direct Sum of Hilbert Spaces
CHAPTER II
Operators on Hilbert Space
1.Elementary Properties and Examples
2.The Adjoint of an Operator
3.Projections and Idempotents;Invariant and Reducing Subspaces
4.Compact Operators
5.*The Diagonalization of Compact Self-Adjoint Operators
6.*An Application:Sturm-Liouville Systems
7.*The Spectral Theorem and Functional Calculus for Compact Normai
Operators
8.*Unitary Equivalence for Compact Normai Operators
CHAPTER III
Banach Spaces
1.Elementary Properties and Examples
2.Linear Operators on Normed Spaces
3.Finite Dimensional Normed Spaces
4.Quotients and Products of Normed Spaces
5.Linear Functionals
6.The Hahn-Banach Theorem
7.*An Application:Banach Limits
8.*An Application:Runge's Theorem
9.*An Application:Ordered Vector Spaces
10.The Dual of a Quotient Space and a Subspace
11.Reflexive Spaces
12.The Open Mapping and Closed Graph Theorems
13.Complemented Subspaces of a Banach Space
14.The Principle of Uniform Boundedness
CHAPTER IV
Locally Convex Spaces
S1.Elementary Properties and Examples
2.Metrizable and Normable Locally Convex Spaces
3.Some Geometric Consequences of the Hahn-Banach Theorem
4.*Some Examples of the Dual Space of a Locally Convex Space
5.*Inductive Limits and the Space of Distributions
CHAPTER V
Weak Topologies
1.Duality
2.The Dual of a Subspace and a Quotient Space
3.Alaoglu's Theorem
84.Reflexivity Revisited
5.Separability and Metrizability
S6.*An Application:The Stone-Cech Compactification
87.The Krein-Milman Theorem
8.An Application:The Stone-Weierstrass Theorem
9.*The Schauder Fixed Point Theorem
10.*The Ryll-Nardzewski Fixed Point Theorem
11.*An Application:Haar Measure on a Compact Group
12.*The Krein-Smulian Theorem
13.*Weak Compactness
CHAPTER VI
Linear Operators on a Banach Space
1.The Adjoint of a Linear Operator
2.*The Banach-Stone Theorem
3.Compact Operators
4.Invariant Subspaces
5.Weakly Compact Operators
CHAPTER VII
Banach Algebras and Spectral Theory for
Operators on a Banach Space
1.Elementary Properties and Examples
2.Ideals and Quotients
3.The Spectrum