内容简介
该书首先介绍了燃料电池的基本概念,然后重点对聚合物电解质膜的状态、形成理论与模型、 膜内吸附与溶胀、质量传输;催化层结构与运行;催化剂性能模型以及具体的应用等进行了详细的介绍。理论性较强,较多地涉及理论知识和模型的建立等,可供从事燃料电池,尤其是聚合物电解质燃料电池研究和应用的教师、学生、科学家和工程师参考。
目录
绪论1
第1章基本概念11
1.1燃料电池的原理和基本布局11
1.1.1燃料电池的自然界蓝图11
1.1.2电动势11
1.1.3单节电池的基本构造13
1.2燃料电池热力学14
1.3物质传输过程18
1.3.1传输过程综述18
1.3.2流道中的空气流动18
1.3.3气体扩散层和催化层中的传输20
1.4电位21
1.5热产生和传输25
1.5.1阴极催化层中的热产生25
1.5.2膜中热产生26
1.5.3水蒸气26
1.5.4热传导方程27
1.6燃料电池的催化作用简介28
1.6.1电化学催化基本概念29
1.6.2电化学动力学29
1.7聚合物电解质燃料电池中的关键材料:聚合物电解质膜33
1.7.1膜的研究33
1.7.2基础结构图34
1.7.3谁是质子最好的朋友?34
1.7.4质子和水的耦合传输35
1.8聚合物电解质燃料电池关键材料:多孔复合电极36
1.8.1催化层形貌37
1.8.2Pt的困境39
1.8.3催化层设计40
1.9Ⅰ型电极的性能42
1.9.1理想电极的运行42
1.9.2电极运行规则43
1.9.3性能模型是什么?46
1.10燃料电池模型的空间尺度47
第2章聚合物电解质膜49
2.1简介49
2.1.1聚合物电解质膜的结构和运行的基本原理49
2.1.2导电能力评估50
2.1.3PEM电导率:仅仅是组成的一个函数?50
2.1.4理解PEM结构和性能的挑战53
2.2聚合物电解质膜的状态54
2.2.1PEM的化学结构和设计54
2.2.2水的作用55
2.2.3膜的结构:实验研究57
2.2.4膜的形貌:结构模型59
2.2.5PEM中水和质子的动力学性质61
2.3PEM结构形成理论和模型63
2.3.1带电聚合物在溶液中的聚集现象63
2.3.2PEM自组装的分子模型67
2.3.3粗粒度的分子动力学模拟71
2.4膜的水吸附和溶胀77
2.4.1PEM中的水:分类体系77
2.4.2水吸附现象78
2.4.3水吸附模型79
2.4.4毛细冷凝作用79
2.4.5单孔内水吸收平衡80
2.4.6水吸附和溶胀的宏观效应86
2.4.7水吸附模型的优点和限制92
2.5质子传输93
2.5.1水中的质子传输94
2.5.2表面质子传输:为何麻烦?96
2.5.3生物学和单体中的表面质子传输97
2.5.4模拟表面质子传输:理论和计算98
2.5.5单孔内质子传输的模拟100
2.5.6界面质子动力学的原位算法102
2.5.7膜电导率的随机网络模型111
2.5.8电渗系数113
2.6结束语115
2.6.1自组装的相分离膜形态学115
2.6.2外界条件下的水吸附和溶胀116
2.6.3水的结构和分布116
2.6.4质子和水的传输机制116
第3章催化层结构与运行117
3.1质子交换膜燃料电池的能量来源117
3.1.1催化层结构与性能的基本原理117
3.1.2催化层中结构与功能的形成119
3.1.3本章的概述和目标122
3.2多孔电极的理论与建模123
3.2.1多孔电极理论简史123
3.2.2误解与存在争议的问题125
3.3如何评估CCL的结构设计?126
3.3.1粒子半径分布的统计结果126
3.3.2Pt利用率的实验评估方法127
3.3.3催化活性128
3.3.4基于原子的Pt纳米粒子利用率因子129
3.3.5统计利用率因子129
3.3.6非均匀反应速率分布:效率因子131
3.3.7氧消耗过程中的效率因子:一个简单的例子132
3.4理论和模型中的最高水平:多尺度耦合133
3.5燃料电池催化剂的纳米尺度现象135
3.5.1粒子尺寸效应135
3.5.2Pt纳米粒子的内聚能136
3.5.3电化学氧化中COad的活性和非活性位点139
3.5.4Pt纳米颗粒氧化产物的表面多向性143
3.6Pt氧还原反应的电催化146
3.6.1Sabatier-Volcano原理146
3.6.2实验观察148
3.6.3Pt氧化物形成和还原149
3.6.4ORR反应的相关机制151
3.6.5ORR反应的自由能154
3.6.6解密ORR反应155
3.6.7关键的说明157
3.7水填充纳米孔洞的ORR反应:静电效应158
3.7.1无离聚物的超薄催化层158
3.7.2具有带电金属内壁的充水孔洞模型161
3.7.3控制方程与边界条件162
3.7.4求解稳态模型164
3.7.5界面的充电行为165
3.7.6电位相关的静电效应166
3.7.7纳米孔洞模型的评价169
3.7.8纳米质子燃料电池:一种新的设计规则?172
3.8催化层的结构形式及其有效性质172
3.8.1分子动力学模拟174
3.8.2CLs原子尺度的MD模拟174
3.8.3催化层溶液中自组装结构的中等尺度模型175
3.8.4粗粒度模型中力场的参数化177
3.8.5计算细节179
3.8.6微观结构分析179
3.8.7CLs中微观结构的形成180
前言/序言
译者前言
近些年来,国内外对燃料电池的研究不断深入,燃料电池技术基于自身的特点及优势在地面、航空航天等领域的应用均取得了较大的进展,但离全面商业化、工程化应用需求仍然存在较大的差距,特别是在航空航天领域的应用需要开展更深入的研究工作。
基于应用背景的差异,燃料电池已经形成5种类型,其中3种(固体氧化物SOFC、熔融碳酸盐MCFC、磷酸盐溶液PAFC)燃料电池需要在中高温工作(大于160℃,最高500~1000℃)。室温型燃料电池包括碱性燃料电池及高分子燃料电池,后者又细分为质子交换膜燃料电池(PEMFC)及直接甲醇燃料电池(DMFC)两种。碱性燃料电池已经在美国Apollo航天飞机上得到应用,美国国家航空航天局(NASA)使用了三个碱性燃料电池模块作为Apollo飞船的电力来源,其额定功率高达6kW,并可提高12kW的峰值功率。随后,NASA将质子交换膜燃料电池应用于“双子座(Gemini)”载人飞行计划,Gemini飞船的主电源由3个1kW燃料电池模块构成,其中两个模块用于满足飞行任务中的全部电力消耗。随着Nafion膜的出现,NASA再次将质子交换膜燃料电池应用于生物卫星项目中。研究发现,与碱性燃料电池技术相比较,氢氧质子交换膜燃料电池具有更大的优势和发展空间,是未来宇航燃料电池电源系统的重点发展方向之一。
本书的翻译人员均具有多年从事宇航应用燃料电池电源系统技术研究工作的经历,为了实现我国燃料电池技术在宇航领域的应用,在研究过程中调研了大量的国内外文献和相关资料,在众多文献中,正如Michael Eikerling博士在序中描述的“这本书在许多方面是独一无二的”,因此选择对本书进行翻译。本书重点介绍“质子在聚合物电解质膜复杂的含水多孔环境中的传输理论以及水在膜内质子传输过程中的吸附过程和分布”,从物理学角度,诠释燃料电池运行过程中的材料特性、运行机理和燃料电池的运行规律。如此深入而全面的分析对于宇航用高可靠氢氧质子交换膜燃料电池技术的研究是不可多得的资料。
本书在翻译过程中得到中国空间技术研究院神舟学院制造分院和北京卫星制造厂有限公司的大力支持与帮助。空间燃料电池研究团队负责本书的翻译和审核工作,感谢李思振、冯磊、王景润、陈学成、王楠、谢文、唐林江、刘健等对本书的翻译出版给予的大力支持!
译者
2019年3月
前言
自克里斯蒂安·弗里德里希·肖恩贝和威廉·格罗夫爵士发现和第一次验证燃料电池原理以来,已经过去了175年。然而,尽管经过多年的研究,燃料电池仍然是特殊而且昂贵的电源。主要原因是材料成本高和缺乏燃料电池运行的基本知识。
本书中,详细讨论了低温聚合物质子交换膜燃料电池(PEM:polymer electrolyte membrane)。低温燃料电池的典型代表包括氢聚合物燃料电池(PEFCs:polymer electrolyte fuel cells)和液体甲醇燃料电池(DMFCs:direct methanol fuel cells)。尽管本书中大部分内容是介绍PEFCs的材料及性能模型,但是由于DMFCs具有应用于移动手机领域的广泛前景,本书对DMFCs的一些特点也进行了介绍。
众所周知,PEFC是一个高效和环保的电源。燃料电池反应的唯一化学产物是水;废气中既不含二氧化碳也不含有毒性氧化物以及化石燃料燃烧除水外的产物。与内燃机(ICE)相反,燃料电池不产生噪声。燃料电池的另一个优点是简单,比ICE简单得多。当打开ICE车的整流罩,看见很多管道。在PEFC系统中,管道也存在,但它们是不可见的,因为它们是纳米尺寸的。
纳米尺度特征尺寸是电化学能量转换系统特有的结构特征。小维度研究难度的固有性能增益是科学家和工程师在材料和尺寸方面性能研究面临的巨大挑战。电化学特性要求阳极电催化剂材料具有活性表面积,同时阴极的活性表面积也尽可能高;这就意味着燃料电池电极必须设计为多孔复合结构。这个电极和气体扩散层以及质子传导膜一起组成了膜电极组件(MEA:membrane-electrode assembly)。MEA为分层多孔材料,其中分子化学、物理、电化学和动力均在此交汇。燃料电池性能主要取决于MEA的动力学和传输性能,这不是很好理解。本书用大部分篇幅介绍MEA及所使用材料的物理特性。
燃料电池无疑是将氢氧反应自由能转换成电能的最好方式。一旦我们有氢,燃料电池是利用其的最好方式。氢的生产、储存和分配是一系列超出本书范围的科学和工程挑战。由于任何自然丰富的电源(如直接的阳光或风)均可用于产生H2,燃料电池代表未来任何一个高效、低碳和无排放能源经济的绝对重要的组成元素。
像任何潜在的革命性技术转变一样,氢经济引起巨大的期待、忧虑以及怀疑。到目前为止,许多期望还没有实现,但是,也看到了曙光,科学技术的进步是惊人的。有迹象表明,氢经济是全球能源挑战唯一可行的解决方案,而且它实际上正在出现。
在过去几十年中,我们目睹了计算功率(摩尔定律)的指数式增长。20世纪初,计算机在出现前没有类似物;然而,这正如100年前