内容简介
八年前,“数学之美”系列文章原刊载于谷歌黑板报,获得上百万次点击,得到读者高度评价。读者说,读了“数学之美”,才发现大学时学的数学知识,比如马尔可夫链、矩阵计算,甚至余弦函数原来都如此亲切,并且栩栩如生,才发现自然语言和信息处理这么有趣。
在纸本书的创作中,作者几乎把所有文章都重写了一遍,为的是把高深的数学原理讲得更加通俗易懂,让非专业读者也能领略数学的魅力。读者通过具体的例子学到的是思考问题的方式 —— 如何化繁为简,如何用数学去解决工程问题,如何跳出固有思维不断去思考创新。
本书第一版荣获国家图书馆第八届文津图书奖。第二版增加了针对大数据和机器学习的内容。第三版增加了三章新内容,分别介绍当今非常热门的三个主题:区块链的数学基础,量子通信的原理,以及人工智能的数学极限。
精彩书评
《数学之美》一书让我们能够体会为什么数学可以和音乐、美术一样,具有美感。康德认为数学式之所以美,在于它的合理性——合理是大脑天生的逻辑演绎系统,人人皆有。因此,当我们谈论数学之美时,不是比喻,不是人为造作,而是真的人性之感受。
王小川/搜狗创始人
数学方面我是外行,所以也挺有兴趣读点这方面的科普书。在朋友推荐下读了吴军博士的《数学之美》第二版,觉得饶有趣味,也受益匪浅。现在这本书又出了第三版,里面第31章是专门写区块链的,结合原有的第17章专讲密码,这样书中就有两章是关于区块链的了。迄今在中文世界所见关于密码和区块链的科普著作中,我觉得《数学之美》属于上乘,也许是最好的。从整体上说,这本书既通俗易懂,又有一定深度,给人启发,特别适合从事信息产业的人士阅读。
毛德操/浙大网新科技首席科学家,《区块链技术》作者
本书的章节名称,有“统计语言模型”“谈谈中文分词”“贾里尼克和现代语言处理”“布尔代数和搜索引擎”“信息指纹及其应用”等,似乎太过专业,实际上高中和大学低年级的同学们都能看得懂,当然本书因此也可以称得上是“高级科普”。总之,本书是在介绍信息技术背后的数学原理,以及这些技术和原理背后的科学家的故事及他们从事科学研究的方式方法。故事生动翔实而富有教益,是一部优秀的科学方法论的启蒙读物。
王渝生/中国科技馆原馆长
目录
I 第二版序言
III 第一版序言
VI 第三版前言
1 第1章 文字和语言 vs 数字和信息
文字和语言与数学,从产生起原本就有相通性,虽然它们的发展一度分道扬镳,但是最终还是能走到一起。
1 信息
2 文字和数字
3 文字和语言背后的数学
15 第2章 自然语言处理——从规则到统计
人类对机器理解自然语言的认识走了一条大弯路。早期的研究集中采用基于规则的方法,虽然解决了一些简单的问题,但是无法从根本上将自然语言理解实用化。直到20多年后,人们开始尝试用基于统计的方法进行自然语言处理,才有了突破性进展和实用的产品。
1 机器智能
2 从规则到统计
27 第3章 统计语言模型
统计语言模型是自然语言处理的基础,并且被广泛应用于机器翻译、语音识别、印刷体,或手写体识别、拼写纠错、汉字输入和文献查询。
1 用数学的方法描述语言规律
2 延伸阅读:统计语言模型的工程诀窍
41 第4章 谈谈分词
中文分词是中文信息处理的基础,它同样走过了一段弯路,目前依靠统计语言模型已经基本解决了这个问题。
1 中文分词方法的演变
2 延伸阅读:如何衡量分词的结果
50 第5章 隐马尔可夫模型
隐马尔可夫模型最初应用于通信领域,继而推广到语音和语言处理中,成为连接自然语言处理和通信的桥梁。同时,隐马尔可夫模型也是机器学习的主要工具之一。
1 通信模型
2 隐马尔可夫模型
3 延伸阅读:隐马尔可夫模型的训练
60 第6章 信息的度量和作用
信息是可以量化度量的。信息熵不仅是对信息的量化度量,也是整个信息论的基础。它对于通信、数据压缩、自然语言处理都有很强的指导意义。
1 信息熵
2 信息的作用
3 互信息
4 延伸阅读:相对熵
72 第7章 贾里尼克和现代语言处理
作为现代自然语言处理的奠基者,贾里尼克教授成功地将数学原理应用于自然语言处理领域中,他的一生富于传奇色彩。
1 早年生活
2 从水门事件到莫妮卡·莱温斯基
3 一位老人的奇迹
82 第8章 简单之美——布尔代数和搜索引擎
布尔代数虽然非常简单,却是计算机科学的基础,它不仅把逻辑和数学合二为一,而且给了我们一个全新的视角看待世界,开创了数字化时代。
1 布尔代数
2 索引
89 第9章 图论和网络爬虫
互联网搜索引擎在建立索引前需要用一个程序自动地将所有的网页下载到服务器上,这个程序称为网络爬虫,它的编写是基于离散数学中图论的原理。
1 图论
2 网络爬虫
3 延伸阅读:图论的两点补充说明
98 第10章 PageRank——Google的民主表决式网页排名技术
网页排名技术PageRank是早期Google的杀手锏,它的出现使得网页搜索的质量上了一个大的台阶。它背后的原理是图论和线性代数的矩阵运算。
1 PageRank算法的原理
2 延伸阅读:PageRank的计算方法
104 第11章 如何确定网页和查询的相关性
确定网页和查询的相关性是网页搜索的根本问题,其中确定查询中每个关键词的重要性有多高是关键。TF-IDF是目前通用的关键词重要性的度量,其背后的原理是信息论。
1 搜索关键词权重的科学度量TF-IDF
2 延伸阅读:TF-IDF 的信息论依据
111 第12章 有限状态机和动态规划——地图与本地搜索的核心技术
地图与本地搜索中要用到有限状态机和动态规划技术。这两项技术是机器智能和机器学习的工具,它们的应用非常广泛,还包括语音识别、拼写和语法纠错、拼音输入法、工业控制和生物的序列分析等。
1 地址分析和有限状态机
2 全球导航和动态规划
3 延伸阅读:有限状态传感器
121 第13章 Google AK-47的设计者——阿米特·辛格博士
在所有轻武器中最有名的是AK-47冲锋枪,因为它从不卡壳,不易损坏,可在任何环境下使用,可靠性好,杀伤力大并且操作简单。Google的产品就是按照上述原则设计的。
127 第14章 余弦定理和新闻的分类
计算机虽然读不懂新闻,却可以准确地对新闻进行分类。其数学工具是看似毫不相干的余弦定理。
1 新闻的特征向量
2 向量距离的度量
3 延伸阅读:计算向量余弦的技巧
试读
第三版后记
很多朋友问我,为什么会想起来写“数学之美”系列博客,并且要出书?这要回到2006年。
那一年,Google刚进入中国市场,当时负责中国市场产品形象的吴丹丹女士开设了Google中国(即谷歌)官方博客——谷歌黑板报。吴丹丹女士邀请我写一些博客介绍Google的产品。作为一名计算机科学家,以及当时谷歌绝大部分与中文相关产品的发起人,我觉得直接介绍产品有王婆卖瓜自卖自夸之嫌,于是我和吴丹丹商量,写了一系列短文,介绍Google产品背后的基本技术,尤其是数学原理。我相信,当读者特别是工程师们了解了Google产品背后的技术时,他们会更加信赖我们的产品。于是,我根据自己当时在Google的工作经历和之前在约翰.霍普金斯大学的研究经历,写了几篇主题为“数学之美”的博客。
将数学的东西说清楚,让外行都能读懂,并非易事。我自认为是一个擅长把技术原理深入浅出地讲明白的人,但是,当我第一次将所写的几篇博客送给吴丹丹以及Google其他非工程专业的同事阅读时,他们还是表示理解起来十分费劲。为此,后来我下了很多功夫,设法将每一篇博客都写得浅显易懂,并且为了方便大部分读者阅读,省略了相当多的技术细节。后来证明,在博客中这样处理是正确的。
写博客之初,我并没有一个完整的写作计划,加上在Google的工作也很忙,因此有空就抽时间写一点,写到哪儿算哪儿。不成想刊登了几篇之后,这些博客受到IT行业广大从业人员和大学生的关注和喜爱,在互联网上被转载了上万次,读者有上百万之众。这里要特别感谢当时著名博主洪波先生(Keso)的转载。于是,在大家的鼓励下,我便陆陆续续写了20多篇。后来因为工作更加繁忙,我的博客写作一度中断过一段时间,但令我感动的是,在这期间始终有读者持续关注这个系列,时不时来询问我能否将这个系列写完,有无可能出书。恰巧2010年初我因为换工作有几周休假,于是利用那段时间完成了这个系列的最后几篇,并且开始把它修订成书。
“数学之美”从博客变成书的过程,首先要感谢周筠老师。2008年,我在创作另一个系列博客“浪潮之巅”时,周筠老师专门和我通了国际长途,商量出书的事情,我当时已经把《浪潮之巅》的出版权签约给了某家出版社,本想婉拒周筠老师,可是后来周老师听说我要从美国到北京出差,专程从武汉赶到Google在北京的办公室,和我聊了《数学之美》的出书计划,这让我很感动。我原以为这种偏数学、偏技术的内容不会有太多读者,有点犹豫,但是周老师非常有信心,于是我们就签了出版协议。之后又因为某种机缘,我从那家出版社拿回了《浪潮之巅》的出版权,也交给了周筠老师出版,这当然是题外话了。
促使我将“数学之美”系列博客变成书的另一个原因,就是我发现无论是在美国还是在中国,大部分软件工程师面对一个未知领域时,都是习惯从直观感觉出发,喜欢用“凑”的方法来解决问题,在中国尤其如此。这样的做法,说得不好听一点儿,就是山寨。我刚到Google时,发现Google早期的一些算法(比如拼写纠错)根本没有系统的模型和理论基础,就是用词组或词的二元组凑出来的。这些方法也算是聊胜于无,但是几乎没有完善和提高的可能,而且使得程序的逻辑非常混乱。
后来,随着公司的成长和实力的壮大,Google开始从全球最好的大学招揽理论基础优异的工程师,使得工程的正确性得到了很好的保证。在Google上市后的一段时间里,工程师们几乎重写了所有项目的程序,凑合的东西基本上看不到了,产品质量有了巨大的飞跃。记得有一年,我指导了三四个美国名校毕业的研究生,用隐马尔可夫模型的框架把Google的拼写纠错模型和其他一些语言的拼写纠错统一起来,从此Google在这个方面将竞争对手远远地甩在了后面。
然而,在其他公司,包括美国一些还挂着高科技头衔的二流IT公司里,山寨情况依然很普遍。在国内,创业小公司做事情重量不重质,倒也无可厚非;但是,上了市、有了钱,甚至利润已经成为世界上数得上的公司,做事情依然如此就不免让人觉得太过随意、太缺乏追求了。很多公司都把精力和财力花在了怎样让产品显得花哨,或者如何购买流量上面,却很少愿意花力气修炼内功,没有把资源用在刀刃上。因此,我觉得有必要对“数学之美”进行系统化的整理,增加更多涉及专业技术的内容,以便让IT公司的工程主管们能够带领部属提高工程水平,逐渐远离山寨,让这些公司能够尽快成长为世界一流的IT公司。当然,我更希望中国做工程的年轻人,能够体会到在信息技术行业做事情的正确方法,以便在职业和生活上都获得成功。
当我真的开始写书的时候,就发现写书比写博客要难得多。一本好书需要结构系统,文字严谨。为了达到出书的要求,我几乎重写了所有的内容,并且把以前写博客时省略掉的技术细节,以延伸阅读的方式补了回来。为了便于非IT读者阅读,我又为每个专题都增加了背景介绍。这样,非IT读者完全可以把关注的重点放在每一个专题的前半部分,而专业人士
前言/序言
第三版前言
数学一词在西方源于古希腊语μ?θημα,意思是通过学习获得的知识。从这个角度来说,早期的数学涵盖的范围比我们今天讲的数学要广得多,和人类的生活也更接近一些。
早期的数学远不如今天神秘,它是非常真实的。与任何事物一样,数学也在不断地演化,而这个发展过程使得数学变得高深起来。数学演化的过程,实际上是将我们生活中遇到的具体事物及其运动的规律不断抽象化的过程。经过几千年的抽象化,大家头脑里能想象的数学只剩下数字、符号、公式和定理了。这些东西和我们的生活似乎渐行渐远,甚至在表面上毫不相关了。今天,除了初等数学,大家一般对数学,尤其是纯粹数学(Pure Mathematics)的用途甚至产生了怀疑。很多大学生毕业后,在大学所学的数学可能一辈子都没有机会应用,几年后就忘得差不多了。这样,很多人也就产生了为什么要学习数学的疑问。更加不幸的是,数学专业的毕业生连就业也颇为困难,在中国和美国都是如此。在很多国人眼里,数学家都像陈景润那样戴着厚厚的镜片、言行举止多少有些木讷。因此,在一般人看来,无论是这些抽象的数字、符号、公式和定理,还是研究它们的数学家,似乎都和美没有什么联系。
然而,事实上数学的用途远远超乎人们的想象,甚至可以说在我们的生活中无处不在。且不说那些和我们生活联系相对较少的领域,比如原子能和航天,都需要用到大量的数学知识。就说我们天天用的产品和技术,背后都有支持它们的数学基础。作为一名工作了20多年的科学工作者,我在工作中经常惊叹数学语言应用于解决实际问题时的魔力。因此,我也很希望把这种神奇讲给大家听。
在古代,最重要的知识,除了对世界的认识和了解,就是人与人之间的互通和交流了,我们把它称为广义上的通信。本书的内容也将从这里开始。为了展示数学的美妙之处,我之所以选择了以通信这个领域为切入点,一来是因为数学在通信中应用非常普遍,二来通信和我们的生活息息相连。从工业社会起,通信就占据了人们生活的大量时间。当人类进入电的时代后,通信的扩展不仅拉近了人与人的距离,而且成为带动世界经济增长的火车头。如今,通信及其相关产业可能占到世界GDP很大的一部分。今天城市里的人们花时间最多的,无非是在电视机前、互联网上、电话上(不论是固定电话还是手机),这些都是这样或那样的通信方式。甚至原本必须人到现场的很多活动,比如购物,也被建立在现代通信基础之上的电子商务逐渐取代。而现代通信,追溯到100多年前的莫尔斯电报码和贝尔的电话,再回到今天的电视、手机和互联网,都遵循着信息论的规律,而整个信息论的基础就是数学。如果往更远处看,我们人类的自然语言和文字的起源背后都受着数学规律的支配。
“信”字作为“通信”一词的50%,表明了信息的存储、传输、处理和理解的重要性。今天每个人都要使用的搜索,以及我们都觉得很神奇的语音识别、机器翻译和自然语言处理也被包括在其中。也许大家想不到,解决这些问题最好的工具就是数学。人们不仅能够十分清晰地用一些通用的数学模型来描述这些领域里看似不同的实际问题,而且能给出非常漂亮的解决办法。每当人们应用数学工具解决了一个个和信息处理相关的问题时,总会感叹数学之美。虽然人类的语言有成百上千种,但处理它们的数学模型却是相同或相似的,这种一致性也是数学之美的表现。在这本书中,我们将介绍一些数学工具,看看人们是如何利用这些数学工具来处理信息,开发出生活中每天都会用到的产品。
数学总是会给人一种深奥和复杂的感觉,但它的本质却常常是简单而直接的。英国哲学家弗朗西斯?培根在《论美德》这篇文章中讲:“美德就如同华贵的宝石,在朴素的衬托下最显华丽。”(Virtue is like a rich stone, best plain set.)数学的美妙,也恰恰在于一个好的方法,通常是最简单明了的方法。因此,我会将“简单即是美”的思想贯穿全书。
相比第二版,这一版增加了三章新内容,分别介绍当今非常热门的三个主题:区块链的数学基础,量子通信的原理,以及人工智能的数学极限。除此之外,与时俱进,对部分原有章节做了相应的更正和必要的补充。
最后,要说明一下本书为何用了不少篇幅来介绍很多我所熟知的自然语言处理和通信领域的世界级专家。这些世界级专家,他们来自不同的国家或民族,不过都有着一个共同的特点,那就是他们的数学基础都特别好,同时运用数学解决了很多实际问题。通过介绍他们日常的工作和生活,希望能让读者对真正的世界级学者有更多的了解和理解。了解他们的平凡与卓越,理解他们取得成功的原因,感受那些真正懂得数学之美的人们所拥有的美好人生。
吴军
2020年3月于硅谷




















